To determine the effects of a defect in NHEJ on the induction of genomic instability by radiation, we investigated X-ray-induced delayed chromosomal aberrations such as dicentrics and fragments in scid mouse cells. We found that radiosensitive scid mouse cells are more susceptible than wild-type mouse cells to the induction of delayed chromosomal aberrations when the cells are exposed to an equivalent survival dose of X-rays. Telomere FISH analysis revealed that radiation enhances the induction of telomeric fusions where telomeric sequences remain at the fused position (tel+ end-fusions), suggesting that radiation induces telomere dysfunction. Moreover, formation of the tel+ end-fusions was found to be enhanced in scid mouse cells, suggesting that DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a role in telomeric stabilization. Thus, the present study suggests that a cause of genomic instability is telomere dysfunction induced by radiation and that a defect in DNA-PKcs enhances the telomeric destabilization.