Mechanisms of hypoxic regulation of plasminogen activator inhibitor-1 gene expression in keloid fibroblasts

J Invest Dermatol. 2003 Nov;121(5):1005-12. doi: 10.1046/j.1523-1747.2003.12564.x.

Abstract

Keloids are an excessive accumulation of extracellular matrix. Although numerous studies have shown elevated plasminogen activator inhibitor-1 (PAI-1) levels in keloid fibroblasts compared with those of normal skin. Their specific mechanisms involved in the differential expression of PAI-1 in these cell types. In this study, the upregulation of PAI-1 expression is demonstrated in keloid tissues and their derived dermal fibroblasts, attesting to the persistence, if any, of fundamental differences between in vivo and in vitro paradigms. We further examined the mechanisms involved in hypoxia-induced regulation of PAI-1 gene in dermal fibroblast derived from keloid lesions and associated clinically normal peripheral skins from the same patient. Primary cultures were exposed to an environmental hypoxia or desferroxamine. We found that the hypoxia-induced elevation of PAI-1 gene appears to be regulated at both transcriptional and post-transcriptional levels in keloid fibroblasts. Furthermore, our results showed a consistent elevation of HIF-1alpha protein level in keloid tissues compared with their normal peripheral skin controls, implying a potential role as a biomarker for local skin hypoxia. Treatment with antisense oligonucleotides against hypoxia-inducible factor 1alpha (HIF-1alpha) led to the downregulation of steady-state levels of PAI-1 mRNA under both normoxic and hypoxic conditions. Conceivably, our results suggest that HIF-1alpha may be a novel therapeutic target to modulate the scar fibrosis process.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Cell Hypoxia / physiology*
  • Cells, Cultured
  • Cycloheximide / pharmacology
  • Dactinomycin / pharmacology
  • Deferoxamine / pharmacology
  • Female
  • Fibroblasts / metabolism
  • Gene Expression Regulation*
  • Half-Life
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Keloid / metabolism*
  • Male
  • Plasminogen Activator Inhibitor 1 / genetics*
  • Promoter Regions, Genetic
  • RNA, Messenger / metabolism
  • Transcription Factors / genetics
  • Transcription Factors / physiology

Substances

  • HIF1A protein, human
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Plasminogen Activator Inhibitor 1
  • RNA, Messenger
  • Transcription Factors
  • Dactinomycin
  • Cycloheximide
  • Deferoxamine