The design and operation of a microfluidic device for sample preparation in MALDI mass spectrometry of peptides and proteins is described. It is particularly useful for proteomics applications and for mass determination of proteins in salt- and detergent-containing solutions. The system consists of a flow channel with two conductive areas or electrical junctions where proteins and peptides are retained by means of an electric field. The microfluidic device is made of PEEK tubing, and the junctions are covered with a conductive polymeric membrane. A syringe pump connected to the device produces a flow stream, and injection of sample is carried out manually via hydrodynamic pressure. Proteolytic peptides and intact proteins in salt- and detergent-containing acidic media were captured at the cathode junction followed by exchange of the original solution to a solvent suitable for subsequent mass spectrometry. Using this principle, a significant desalting effect was obtained for tryptic peptides in mass-mapping experiments. Protein sequence coverages were high (up to 40%) at subpicomole levels with results better than those obtained using reversed-phase solid-phase extraction. In contrast to the latter technique, the microfluidic device has the capacity to efficiently remove detergents such as CHAPS before peptide mapping and protein analysis.