The term "clinical proteomics" refers to the application of available proteomics technologies to current areas of clinical investigation. The ability to simultaneously and comprehensively examine changes in large numbers of proteins in the context of disease or other changes in physiological conditions holds great promise as a tool to unlock the solutions to difficult clinical research questions. Proteomics is a rapidly growing field that combines high throughput analytical methodologies such as two-dimensional gel electrophoresis and SELDI mass spectrometry methods with complex bioinformatics to study systems biology--the system of interest is defined by the investigator. Even with all its potential, however, studies must be carefully designed in order to differentiate true clinical differences in protein expression from differences originating from variation in sample collection, variation in experimental condition, and normal biological variability. Proteomic analyses are already widely in use for clinical studies ranging from cancer to other diseases such as cardiovascular disease, organ transplant, and pharmacodynamic studies.