The purpose of the present study was to determine the relationship between renal sympathetic nerve activity (RSNA) and renal blood flow (RBF) during normal daily activity in conscious, chronically instrumented Wistar rats (n = 8). The animal's behavior was classified as rapid eye movement (REM) sleep, non-REM (NREM) sleep, quiet awake, moving, and grooming states. On average RSNA was lowest during REM sleep, which was decreased by 39.0 +/- 3.2% (P < 0.05) relative to NREM sleep, and rose linearly with an increase in activity level in the order of quiet awake (by 10.9 +/- 1.8%, P < 0.05), moving (by 29.4 +/- 2.9%, P < 0.05), and grooming (by 65.3 +/- 3.9%, P < 0.05) relative to NREM sleep. By contrast, RBF was highest during REM sleep, which was increased by 4.8 +/- 0.7% (P < 0.05) relative to NREM sleep and decreased significantly (P < 0.05) by 5.5 +/- 0.6 and 6.6 +/- 0.5% during moving and grooming states, respectively, relative to NREM sleep. There was a significant (P < 0.05) inverse linear relationship between the percent changes in RSNA and RBF and between those in RSNA and renal vascular conductance. Furthermore, renal denervation (n = 8) abolished the changes in RBF induced by different natural behavioral activities. These results suggest that the changes in RSNA induced by natural behavioral activities had a significant influence on RBF.