Patients with obstructive sleep apnea (OSA) experience repetitive nocturnal oscillations of systemic arterial pressure that occur in association with changes in respiration and changes in sleep state. To investigate cardiac function during the cycle of obstruction (apnea) and resumption of ventilation (recovery), we continuously measured left ventricular stroke volume (LVSV) and mean arterial blood pressure (MAP) during non-rapid-eye-movement sleep in six males with severe OSA (apnea/hypopnea index > or = 30 events/h associated with oxygen saturation < 82%). LVSV was assessed continuously using an ambulatory ventricular function monitor (VEST; Capintec). The apnea-recovery cycle was divided into three phases: 1) early apnea (EA), 2) late apnea (LA), and 3) recovery (Rec). In all subjects recovery was associated with an abrupt decrease in LVSV [54.0 +/- 14.5 (SD) ml] compared with either EA (91.4 +/- 14.7 ml; P < 0.001) or LA (77.1 +/- 15.2 ml; P < 0.005). Although heart rate increased with recovery, the increase was not sufficient to compensate for the decrease in LVSV so that cardiac output (CO) fell (EA: 6,247 +/- 739 ml/min; LA: 5,741 +/- 1,094 ml/min; Rec: 4,601 +/- 1,249 ml/min; EA vs. Rec, P < 0.01; LA vs. Rec, P < 0.025). Recovery was also associated with a significant increase in MAP. We speculate that such abrupt decreases in LVSV and CO at apnea termination, occurring coincident with the nadir of oxygen saturation, may further compromise tissue oxygen delivery.