Aim: Hemodynamic monitoring is an important step in the management of critically ill children despite the difficulty in measuring preload indices continuously. The aim of the study was to analyze cardiac output parameters and preload indices after acute changes in mean airway pressure and volemia.
Methods: Twenty-three children treated at our unit were enrolled in a prospective non randomized cohort study. Respiration was supported by controlled mechanical ventilation with positive expiratory-end pressure (PEEP), peak inspiratory pressure <20 cm H(2)O and mean airway pressure <10 cm H(2)O, and hemodynamic monitoring using the PiCCO system. Hemodynamic parameters were measured at T0 (base line), T(1) (after an increase in PEEP of 5 cm H(2)O for 10 min), and T(2) (after fluid challenge). The statistical analysis (BMPD New System software package) comprised comparison of changes at T(0) vs T(1), T(1) vs T(2) and T(0) vs T(2), construction of 3 correlation matrices and multiple linear regression analysis.
Results: Sixty-nine hemodynamic parameters were measured in the 23 patients. A comparison between T(0) and T(1) showed no significant changes; differences between T(0) and T(2) were found for cardiac index (CI), (p=0.003); between T(0) and T(2) significant differences were found for CI (p=0.0015), intrathoracic blood volume index (ITBVI) (p=0.04) and stroke volume index (SVI) (p=0.06). The analysis of the correlation matrices yielded ITBVI with CI (p=0.0006), ITBVI with SVI (p=1 x 10(-5)), CI with SVI (p=0.002); a significant correlation between CI and extravascular lung water index (EVLWI) was found only at T(1). Multiple linear regression analysis showed that ITBVI and SVI were predictive for variance of CI at each time point.
Conclusion: ITBVI measured by a volumetric monitoring system such as the PiCCO may be considered a sensitive preload indicator also in critically ill children.