Allogeneic versus syngeneic killer splenocytes as effector cells for the induction of graft-versus-tumor effect

Biol Blood Marrow Transplant. 2004 Jan;10(1):40-8. doi: 10.1016/j.bbmt.2003.09.013.

Abstract

The effect of allogeneic versus syngeneic killer cells derived from normal or severe combined immunodeficiency disease (SCID) mice was evaluated for induction of antitumor reaction in a murine model of mammary carcinoma. Tumor cells of H-2d origin were injected intravenously into H-2(d/b) mice 24 hours after total body irradiation (4 Gy). On the following day, lymphokine-activated killer (LAK) splenocytes, derived from either minor (H-2d) or major (H-2b) histocompatibility complex (MHC)-mismatched parental normal mice or MHC (H-2b)-mismatched SCID mice, were given intravenously. LAK cells of H-2d normal or SCID mice, syngeneic to the tumor, were inoculated in parallel. The results show that LAK cells derived from minor histocompatibility complex-mismatched or MHC-mismatched parental normal mice improved the probability of tumor-free survival as compared with LAK cells syngeneic to the tumor cells, but they aggravated the severity of graft-versus-host disease. SCID splenocytes serving as a source of natural killer (NK) cells were expanded and activated in vitro by rIL-2 to obtain a sufficient number of DX5+ CD3- CD8- NK cells (SCID-LAK). H-2b SCID-LAK cells did not cause graft-versus-host disease and significantly delayed tumor growth compared with syngeneic H-2d SCID-LAK cells, as indicated by tumor colony assays in vitro and adoptive transfer experiments. However, the graft-versus-tumor effect was not long lasting, and treated mice finally died of tumor. Our results show an advantage of allogeneic over syngeneic cell therapy for achieving a graft-versus-tumor effect by rIL-2-activated T cells and NK cells. Periodic repetition of NK treatments may be required to achieve more durable antitumor effects.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Graft vs Host Disease / immunology
  • Graft vs Tumor Effect / immunology*
  • Histocompatibility
  • Killer Cells, Lymphokine-Activated / transplantation*
  • Lymphocyte Transfusion
  • Mammary Neoplasms, Animal / complications
  • Mammary Neoplasms, Animal / therapy
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C57BL
  • Mice, SCID
  • Spleen / cytology*
  • Spleen / immunology
  • Survival Rate
  • Transplantation, Homologous*
  • Transplantation, Isogeneic*