Diffuse bipolar cells in primate retina receive synaptic input from multiple cones and provide output to ganglion cells. Diffuse bipolar cells can be subdivided into six types (DB1-DB6) according to the stratification of their axon terminals in the inner plexiform layer, but their synaptic connectivity in the inner plexiform layer is not well understood. Here the stratification and synaptic connectivity of DB6 axon terminals were studied in the retinae of New World (marmoset) and Old World (macaque) monkeys. Immunohistochemical markers were applied to retinal sections. The sections were analyzed by confocal and deconvolution light microscopy as well as electron microscopy. The DB6 cells were identified with antibodies against CD15; rod bipolar cells were identified with antibodies against protein kinase Calpha (PKCalpha); and AII amacrine cells were identified with antibodies against calretinin. The axons of DB6 and rod bipolar cells occupy distinct regions in stratum 5 of the inner plexiform layer. The distal processes of calretinin-labeled AII cells are usually closely associated with rod bipolar axons but sometimes also with DB6 axons. Pre-embedding immunoelectron microscopy showed that the vast majority (over 86%) of the synaptic output of DB6 cells is onto amacrine cell processes, whereas less than 14% goes to ganglion cell processes. In double-labeled preparations DB6 axons occasionally made output onto calretinin-labeled amacrine processes. Thus it is possible that AII cells receive some input from DB6 cells.
Copyright 2004 Wiley-Liss, Inc.