Detection of simulated pulmonary embolism in a porcine model using hyperpolarized 3He MRI

Magn Reson Med. 2004 Feb;51(2):291-8. doi: 10.1002/mrm.10698.

Abstract

Several radiological imaging modalities are available to assist with the clinical diagnosis of pulmonary embolism (PE). The most frequently used techniques-nuclear medicine ventilation-perfusion (VP) scan, computed tomography (CT), magnetic resonance angiography (MRA), and pulmonary angiography (PA)-all have literature-supported, substantial limitations with respect to timeliness and patient safety. Hyperpolarized 3He magnetic resonance gas distribution imaging (HP 3He MRI) recently has shown potential as a safer and faster alternative. In this study, we performed HP 3He MRI on a porcine model (N = 6) of simulated PE using selective occlusion balloon catheterization (N = 4) and nonselective aged autologous clot injection (N = 1). The technique was also performed on a normal pig and again after the animal was killed. Temporal depletion of regional HP 3He MRI signal intensity provided for a qualitative assessment of simulated PE (N = 4), and regional PAO2 (alveolar partial pressure of oxygen) was calculated in affected airspaces for a quantitative assessment of simulated PE (N = 1). The preliminary results suggest that HP (3)He MRI shows promise as a means of assessing regional pulmonary perfusion abnormalities in the porcine models of simulated PE that were used in this study.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Disease Models, Animal
  • Helium
  • Isotopes
  • Magnetic Resonance Imaging / methods*
  • Pulmonary Embolism / diagnosis*
  • Pulmonary Embolism / pathology
  • Swine

Substances

  • Isotopes
  • Helium