Assessment of axonal loss in Charcot-Marie-Tooth neuropathies

Exp Neurol. 2003 Dec;184(2):753-7. doi: 10.1016/S0014-4886(03)00293-0.

Abstract

Sensory loss and weakness in Charcot-Marie-Tooth (CMT) neuropathy is due to axonal loss. However, the pattern and degree of axonal loss cannot be accurately determined from routine electrodiagnostic or strength testing due to collateral reinnervation. We sought to quantify axonal loss in two upper extremity muscles in CMT1A and CMT2 subjects using the electrophysiologic endpoint measure of motor unit number estimation (MUNE). Hypothenar and biceps-brachialis muscle groups were studied in 9 CMT1A, 9 CMT2, and 10 control subjects. The spike-triggered averaging (STA) technique was used to collect surface motor unit potentials for MUNE calculations, and a needle electrode was used to collect corresponding intramuscular data. Maximal voluntary hypothenar and handgrip strength was measured quantitatively, while biceps-brachialis strength was measured qualitatively. Compared to normal subjects, CMT1A and CMT2 subjects had significantly lower MUNE values in hypothenar muscles. Biceps-brachialis MUNE values were reduced in CMT2 but not in CMT1A subjects. In support of proximal axonal loss in CMT2 subjects, surface motor unit and intramuscular potential amplitudes were higher in biceps-brachialis muscles compared to controls. Correlations between quantitative strength and MUNE were significant for hypothenar but not for grip muscle groups. Axonal loss is demonstrated in distal muscles in CMT1A and CMT2 supporting a length-dependent axonopathy. Despite clinical findings of normal or near-normal strength and small reductions in compound muscle action potential (CMAP) amplitude, MUNE values were significantly lower in CMT2 subjects in proximal muscles, consistent with more diffuse denervation. These data indicate that subclinical axonal loss is present that cannot be appreciated using clinical examination or routine electrodiagnostic techniques.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Action Potentials / physiology
  • Adult
  • Aged
  • Charcot-Marie-Tooth Disease / pathology
  • Charcot-Marie-Tooth Disease / physiopathology*
  • Electromyography
  • Electrophysiology
  • Humans
  • Middle Aged
  • Motor Neurons / pathology
  • Motor Neurons / physiology
  • Muscle, Skeletal / innervation*
  • Muscle, Skeletal / physiopathology
  • Nerve Degeneration / pathology
  • Nerve Degeneration / physiopathology*