Inhaled furosemide has been shown to reduce the bronchoconstriction induced by several indirect stimuli, including ultrasonically nebulized distilled water (UNDW). Because the protective effect could be due to the inhibition of the Na(+)-2Cl(-)-K+ cotransport system of bronchial epithelium, we have compared the protective effect of inhaled furosemide with that of inhaled torasemide, a new and more potent loop diuretic, on UNDW-induced bronchoconstriction in a group of 12 asthmatic subjects. UNDW challenge was performed by constructing a stimulus-response curve with five increasing volume outputs of distilled water (from 0.5 to 5.2 ml/min) and the bronchial response expressed as the provocative output causing a 20% fall in FEV1 (PO20UNDW). On different days, each subject inhaled an equal dose (28 mg) of furosemide and torasemide in a randomized, double-blind, placebo-controlled study 5 min prior to an UNDW challenge. Furosemide and torasemide had no significant effect on resting lung function. The geometric mean value of PO20UNDW measured after placebo was 1.73 ml/min. This was significantly lower than that recorded after furosemide (4.25 ml/min; p < 0.025), but not after torasemide (3.05 ml/min; p = 0.07). Inhaled furosemide totally blocked bronchial response to UNDW in five subjects. In two of five subjects the response was also blocked by inhaled torasemide. A remarkable increase in diuresis was noted only after torasemide in most subjects. We conclude that inhaled furosemide has a better protective effect than does inhaled torasemide against UNDW-induced bronchoconstriction. However, the protective effect of furosemide is variable, with some asthmatic patients showing no change in bronchial response to UNDW.(ABSTRACT TRUNCATED AT 250 WORDS)