Expression of the alkA gene in Escherichia coli is controlled by Ada protein, which binds to a specific region of the alkA promoter and enhances further binding of RNA polymerase holoenzyme to the complex. To determine the sequence recognized by the Ada protein, we introduced various base substitutions into the promoter region of alkA and examined their effects on expression of the gene, both in vivo and in vitro. Base changes within the sequence AAAGCAAA, located between positions -41 and -34 from the transcription initiation site, greatly decreased the frequencies of initiation of transcription. In footprinting experiments, the region containing this sequence was protected by the Ada protein and base changes within this sequence led to failure of binding of Ada protein to the promoter. It is likely that the Ada protein recognizes the AAAGCAAA sequence in the alkA promoter and binds to the region containing the sequence, thereby allowing ready access of RNA polymerase to the promoter. There are considerable differences between the mechanisms of action of Ada protein on the promoters of alkA and ada, even though the expression of both genes is positively regulated by Ada protein.