Iron is both essential and toxic for cells and impaired iron homeostasis has been shown to cause or potentiate various forms of liver injury. Research in our laboratory suggests that iron also plays a pivotal role in intracellular signaling for NF-kappa B activation in hepatic macrophages (HM). Our results showed: 1) HM from alcohol-fed rats had a increase in the nonheme iron content accompanied by NF-kappa B activation; 2) iron chelation normalized nonheme iron concentration and blocked enhanced NF-kappa B activation and TNF-alpha expression in these cells; 3) LPS-induced NF-kappa B activation was also blocked by iron chelator; 4) iron directly induced TNF-alpha expression via IKK and NF-kappa B activation in normal HM. We propose that iron acts as an independent proinflammatory molecule via induction of the intracellular signaling for NF-kappa B activation in HM and primes the liver for chronic inflammation and injury.