Postinjection transmission scanning in myocardial 18F-FDG PET studies using both filtered backprojection and iterative reconstruction

J Nucl Med. 2004 Feb;45(2):169-75.

Abstract

The aim of the present study was to evaluate the effect of postinjection transmission scanning (Post-Tx) on both the qualitative interpretation and the quantitative analysis of cardiac (18)F-FDG PET images. Furthermore, the accuracy of 2 different methods to correct for emission contamination was studied. An additional aim of this study was to compare images reconstructed with both standard filtered backprojection (FBP) and an iterative reconstruction algorithm (ordered-subset maximization expectation [OSEM]).

Methods: Sixteen patients underwent dynamic (18)F-FDG imaging. Both before injection of (18)F-FDG and after completing the emission scan, a 10-min transmission scan was performed (Pre-Tx and Post-Tx, respectively). Images were reconstructed using both FBP and OSEM. The emission study reconstructed with Pre-Tx was considered to be the gold standard. Emission studies were also reconstructed with Post-Tx, with and without correction for emission contamination. Correction for emission contamination was performed with either transmission image segmentation (TIS) or by estimating the emission bias from the last emission frame (dwell profile [DP] method). All images were then compared by calculating ratios of (18)F-FDG activity between corresponding myocardial segments in each patient. Furthermore, qualitative grading of (18)F-FDG uptake was compared between the studies.

Results: The mean ratio of (18)F-FDG activity between segments from FBP-Post and FBP-Pre was 0.78 +/- 0.08. When TIS and DP were used, the mean ratios were 0.80 +/- 0.07 and 0.94 +/- 0.06, respectively. The use of OSEM resulted in, on average, 2% lower values for (18)F-FDG activity as compared with FBP. The mean normalized (18)F-FDG uptake was higher in FBP-Post, especially in segments with decreased (18)F-FDG activity. Only in the case of DP were no significant differences observed as compared with FBP-Pre. In general, qualitative analysis of the images showed that the agreement between the reconstruction methods was comparable with the reproducibility of FBP-Pre.

Conclusion: Post-Tx for attenuation correction in cardiac (18)F-FDG PET scans resulted in substantial underestimation of (18)F-FDG activity. More accurate results were obtained with correction for emission contamination using DP. Differences in visual assessment of (18)F-FDG images were small. Finally, iterative reconstruction could be used as an alternative to FBP in static (18)F-FDG imaging of the heart.

Publication types

  • Clinical Trial

MeSH terms

  • Algorithms*
  • Blood Glucose / analysis
  • Female
  • Fluorodeoxyglucose F18*
  • Glucose Clamp Technique
  • Heart / diagnostic imaging*
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Male
  • Middle Aged
  • Myocardial Ischemia / diagnostic imaging*
  • Radiopharmaceuticals
  • Reproducibility of Results
  • Time Factors
  • Tomography, Emission-Computed* / methods

Substances

  • Blood Glucose
  • Radiopharmaceuticals
  • Fluorodeoxyglucose F18