The mutation spectrum of the APC gene in FAP patients from southern Italy: detection of known and four novel mutations

Hum Mutat. 2003 Jun;21(6):655-6. doi: 10.1002/humu.9151.

Abstract

Familial adenomatous polyposis (FAP), an autosomal dominantly inherited condition accounting for about 1% of all colorectal cancers, results from mutations in the adenomatous polyposis coli (APC) tumor suppressor gene. The clinical spectrum and severity of FAP varies greatly with the mutation site, and both between and within families. Using the protein truncation test, single strand conformation polymorphism analysis and DNA sequencing, we identified 30 (75%) mutant alleles in 40 unrelated FAP families, for a total of 22 different APC mutations. Of these, 18 are known and 4 are novel: c.1797C>A (C599X), c.893_894delAC, (c.3225T>A; c.3226C>A) and c.4526_4527insT. Of the 30 APC gene mutations, 5 (approximately 17%) are nonsense mutations, 17 (approximately 57%) are small deletions, 5 (approximately 17%) are small insertions and 3 (approximately 10%) are complete deletions. All mutations occurred in single pedigrees, except those at codons 1061 and 1062, each found in two unrelated families, and the mutation at codon 1309 in exon 15, found in five unrelated families. About 40% of mutations, mostly small deletions and insertions, are located at repeated sequences; they promote misalignment-mediated errors in DNA replication and could represent a hot spot mutation region. This study enlarges the spectrum of APC gene mutations and sheds light on the correlation between the site of APC germline mutations and clinical manifestations of FAP.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenomatous Polyposis Coli / genetics*
  • Adenomatous Polyposis Coli / pathology
  • Adenomatous Polyposis Coli Protein / genetics*
  • DNA / chemistry
  • DNA / genetics
  • DNA Mutational Analysis
  • Germ-Line Mutation
  • Humans
  • Italy
  • Mutation*
  • Pedigree
  • Polymorphism, Single-Stranded Conformational

Substances

  • Adenomatous Polyposis Coli Protein
  • DNA