During different phases of the annual growth cycle, xylem sap was collected from trunk segments of adult beech (Fagus sylvatica L.) trees by the water displacement technique. Irrespective of the height of the trunk, both sulfate and reduced sulfur compounds were detected in the xylem sap throughout the year. Sulfate was the predominant sulfur compound in all samples analyzed. Its concentration in the xylem sap varied between 10 and 350 micro mol l(-1), with highest concentrations in April, shortly before bud break. In contrast to other tree species, cysteine and not glutathione was the predominant thiol transported in the xylem sap of beech trees. The cysteine concentration ranged between 0.1 and 1 micro mol l(-1). As observed for sulfate, maximum cysteine concentrations were found in April. Apparently, both sulfate and cysteine transport contribute to the sulfur supply of the developing leaves. Seasonal changes in the axial distribution of cysteine and sulfate differed, indicating differences in the source-sink relations of these sulfur compounds. High, but uniform, xylem sap sulfate concentrations in April may originate from balanced sulfate uptake by the roots, whereas high cysteine concentrations in April, increasing with increasing height of the trunk, may originate in part from protein breakdown in the trunk. Reversal of the axial distribution of xylem sap cysteine in late summer-early fall to higher concentrations in the lower part of the trunk than in the upper part of the trunk suggests that the upper part of the trunk becomes a sink for cysteine as a result of the synthesis of storage proteins at this time of the year.