Oocyte transport: Developmental competence of bovine oocytes arrested at germinal vesicle stage by cycloheximide under air

J Reprod Dev. 2003 Feb;49(1):61-6. doi: 10.1262/jrd.49.61.

Abstract

The effects of the medium (TCM 199 or SOFaa) and temperature (20 or 39 C) during meiotic arrest by cycloheximide (CHX) under air on the developmental competence of bovine oocytes after in vitro maturation (IVM) and fertilization (IVF) were investigated. Oocytes were maintained in meiotic arrest by 10 microg/ml CHX in a 50-microl droplet of 25-mM HEPES-buffered TCM 199 (H199) at 39 C or synthetic oviduct fluid (HSOFaa) at 20 or 39 C in air for 24 h. After release from the arrest, the oocytes was matured and fertilized in vitro and their developmental competence was examined. The developmental rate of oocytes arrested in HSOFaa at 20 C to the blastocyst stage was similar to that of non-arrested oocytes but was significantly higher (P<0.05) than that of oocytes arrested at 39 C in H199 or in HSOFaa. In consideration of oocyte transport conditions, we also investigated the meiotic arrest of oocytes maintained in a 0.25-ml straw by CHX individually with 10 microl HSOFaa or as a group (40-50 oocytes) with 170-200 microl HSOFaa at 20 C in air for 24 h. After release from meiotic arrest, the developmental competence of these oocytes was assessed similarly. The developmental rate of oocytes treated with CHX individually was similar to that of those treated with CHX in 50-microl droplet of HSOFaa at 20 C. However, the developmental rate of oocytes treated with CHX as a group was lower than that of oocytes treated with CHX in a 50-microl droplet. Five blastocysts developed from oocytes maintained in meiotic arrest in a plastic straw were transferred to five recipient heifers. Consequently, three recipients became pregnant and 2 calves were delivered. The results of the present study indicate that bovine oocytes treated with CHX in HSOFaa at 20 C under air retain the same developmental competence as non-arrested oocytes.

MeSH terms

  • Air
  • Animals
  • Biological Transport
  • Blastocyst / drug effects*
  • Blastocyst / metabolism
  • Cattle
  • Cycloheximide / pharmacology*
  • Female
  • Fertilization
  • Fertilization in Vitro
  • Meiosis
  • Oocytes / metabolism*
  • Pregnancy
  • Pregnancy, Animal
  • Protein Synthesis Inhibitors / pharmacology*
  • Temperature
  • Time Factors

Substances

  • Protein Synthesis Inhibitors
  • Cycloheximide