Choline, a precursor of acetylcholine and phosphatidylcholine, is largely obtained from the diet. Animal studies demonstrate increased choline metabolites in brain following oral administration. Several proton magnetic resonance spectroscopy ((1)H-MRS) reports differ as to whether similar increases are observable in human subjects. This study was designed to minimize intra-subject variance and thereby maximize the ability to determine if a significant increase in brain choline can be detected after choline ingestion. (1)H-MRS was performed continuously for 2.5 h on 11 healthy young males following choline ingestion. Nine of the original subjects returned for identical scans without choline ingestion. Following oral choline, there was a statistically significant increase in the choline signal (Cho) measured from the left putamen, representing choline-containing compounds, as measured against creatine (Cr) or N-acetylaspartate (NAA). The mean increase in Curve maxima (C(max)) is 6.2% for Cho/Cr and 3.0% for Cho/NAA. The Mean Time to C(max) (T(max)) was approximately 2 h after ingestion. A 3-6% increase in Cho by MRS likely corresponds to a 10-22% increase in phosphocholine, similar to findings in animal studies. In conclusion, a significant increase in choline-containing compounds in human brain can be detected by (1)H-MRS after choline ingestion in young subjects.