Cytotoxic lymphocytes, including cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, kill target cells by releasing granules containing perforin and granzymes, and/or via Fas-Fas ligand interactions. Both pathways lead to prompt activation within target cells of caspase cascades responsible for apoptosis induction and cell death. We have utilized cell-permeable fluorogenic caspase substrates and multiparameter flow cytometry to detect caspase activation in target cells, and applied these tools to quantify and visualize cytotoxic lymphocyte activities. This novel assay, referred to as the flow cytometric cytotoxicity (FCC) assay, is a nonradioactive single-cell-based assay that provides a more rapid, biologically informative, and sensitive approach to measure cytotoxic lymphocyte activity when compared to other assays such as the 51chromium (51Cr) release assay. In addition, the FCC assay can be used to study CTL-mediated killing of primary target cells of different cell lineages that are frequently not amenable to study by the 51Cr release assay. Furthermore, the FCC assay enables evaluation of the phenotype and fate of both target and effector cells, and as such, provides a useful new approach to illuminate the biology of cytotoxic lymphocytes.