Arcanobacterium pyogenes, a common inhabitant of the mucosal surfaces of livestock, is also a pathogen associated with a variety of infections. In livestock, A. pyogenes is exposed to antimicrobial agents used for prophylaxis and therapy, notably tylosin, a macrolide used extensively for the prevention of liver abscessation in feedlot cattle in the United States. Many, but not all, tylosin-resistant A. pyogenes isolates carry erm(X), suggesting the presence of other determinants of tylosin resistance. Oligonucleotide primers designed for conserved regions of erm(B), erm(C), and erm(T) were used to amplify a 404-bp fragment from a tylosin-resistant A. pyogenes isolate, OX-7. DNA sequencing revealed that the PCR product was 100% identical to erm(B) genes, and the erm(B) gene region was cloned in Escherichia coli. The A. pyogenes Erm B determinant had the most DNA identity with an Erm B determinant carried by the Clostridium perfringens plasmid pIP402. However, the A. pyogenes determinant lacked direct repeat DR1 and contained a deletion in DR2. Flanking the A. pyogenes erm(B) gene were partial and entire genes similar to those found on the Enterococcus faecalis multiresistance plasmid pRE25. This novel architecture suggests that the erm(B) element may have arisen by recombination of two distinct genetic elements. Ten of 32 tylosin-resistant isolates carried erm(B), as determined by DNA hybridization, and all 10 isolates carried a similar element. Insertion of the element was site specific, as PCR and Southern blotting analysis revealed that the erm(B) element was inserted into orfY, a gene of unknown function. However, in three strains, this insertion resulted in a partial duplication of orfY.