The injection of male haploid germ cells, such as spermatozoa and round spermatids, into preactivated mouse oocytes can result in the development of viable embryos and offspring. However, it is not clear how the timing of intracytoplasmic sperm injection (ICSI) and round spermatid injection (ROSI) affects the production of offspring. We carried out ICSI and ROSI every 20 min for up to 4 h after the activation of mouse oocytes by Sr(2+) and compared the late-stage development of ICSI- and ROSI- treated oocytes, including the formation of pronuclei, blastocyst formation, and offspring production. The rate of pronucleus formation (RPF) after carrying out ICSI started to decrease from >95% at 100 min following oocyte activation and declined to <20% by 180 min. In comparison, RPF by ROSI decreased gradually from >70% between 0 and 4 h after activation. The RPFs were closely correlated with blastocyst formation. Offspring production for both ICSI and ROSI decreased significantly when injections were conducted after 100 min, a time at which activated oocytes were in the early G1 stage of the cell cycle. These results suggest that spermatozoa and round spermatids have different potentials for inducing the formation of a male pronucleus in activated oocytes, but ICSI and ROSI are both subject to the same time constraint for the efficient production of offspring, which is determined by the cell cycle of the activated oocyte.