Tumor necrosis factor (TNF) alpha-induced neutral sphingomyelinase-mediated generation of ceramide, a bioactive lipid molecule, is transduced by the adaptor protein FAN, which binds to the intracellular region of the CD120a TNFalpha receptor. FAN-deficient mice do not exhibit any gross abnormality. To further explore the functions of FAN in vivo and because CD120a-deficient mice are resistant to endotoxin-induced liver failure and lethality, we investigated the susceptibility of FAN-deficient animals to lipopolysaccharide (LPS). We show that after d-galactosamine sensitization, FAN-deficient mice were partially resistant to LPS- and TNFalpha-induced lethality. Although LPS challenge resulted in a hepatic ceramide content lower in mutant mice than in control animals, it triggered similar histological alterations, caspase activation, and DNA fragmentation in the liver. Interestingly, LPS-induced elevation of IL-6 (but not TNFalpha) serum concentrations was attenuated in FAN-deficient mice. A less pronounced secretion of IL-6 was also observed after LPS or TNFalpha treatment of cultured peritoneal macrophages and embryonic fibroblasts isolated from FAN-deficient mice, as well as in human fibroblasts expressing a mutated FAN. Finally, we show that d-galactosamine-sensitized IL-6-deficient mice were partially resistant to endotoxin-induced liver apoptosis and lethality. These findings highlight the role of FAN and IL-6 in the inflammatory response initiated by endotoxin, implicating TNFalpha.