Tamoxifen and tamoxifen ethyl bromide induce apoptosis in acutely damaged mammary epithelial cells through modulation of AKT activity

Oncogene. 2004 May 6;23(21):3851-62. doi: 10.1038/sj.onc.1207480.

Abstract

Normal human mammary epithelial cells (HMECs), unlike estrogen receptor-positive (ER+) breast cancers, typically express low nuclear levels of ER (ER-'poor'). We previously demonstrated that 1.0 microM tamoxifen (Tam) induced apoptosis in ER-'poor' HMECs acutely transduced with human papillomavirus-16 E6 (HMEC-E6) through a rapid mitochondrial signaling pathway. Here, we show that plasma membrane-associated E2-binding sites initiate the rapid apoptotic effects of Tam in HMEC-E6 cells through modulation of AKT activity. At equimolar concentrations, Tam and tamoxifen ethyl bromide (QTam), a membrane impermeant analog of Tam, rapidly induced apoptosis in HMEC-E6 cells associated with an even more rapid decrease in phosphorylation of AKT at serine-473. Treatment of HMEC-E6 cells with 1.0 microM QTam resulted in a 50% decrease in mitochondrial transmembrane potential, sequential activation of caspase-9 and -3, and a 90% decrease in AKT Ser-473 phosphorylation. The effects of both Tam and QTam were blocked by expression of constitutively active AKT (myristoylated AKT or AKT-Thr308Asp/Ser473Asp). These data indicate that Tam and QTam induce apoptosis in HMEC-E6 cells through a plasma membrane-activated AKT-signaling pathway that results in (1) decreased AKT phosphorylation at Ser-473, (2) mitochondrial membrane depolarization, and (3) activated caspase-9 and -3.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Apoptosis / drug effects*
  • Breast / drug effects*
  • Breast / pathology
  • Caspase 3
  • Caspase 9
  • Caspases / metabolism
  • Cell Line
  • Epithelial Cells / drug effects
  • Epithelial Cells / pathology
  • Estradiol / metabolism
  • Female
  • Humans
  • Membrane Potentials / drug effects
  • Mitochondria / drug effects
  • Mitochondria / physiology
  • Phosphorylation
  • Protein Serine-Threonine Kinases*
  • Proto-Oncogene Proteins / antagonists & inhibitors*
  • Proto-Oncogene Proteins / metabolism
  • Proto-Oncogene Proteins c-akt
  • Signal Transduction / drug effects
  • Tamoxifen / analogs & derivatives
  • Tamoxifen / pharmacology*

Substances

  • Proto-Oncogene Proteins
  • Tamoxifen
  • Estradiol
  • AKT1 protein, human
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt
  • CASP3 protein, human
  • CASP9 protein, human
  • Caspase 3
  • Caspase 9
  • Caspases