Acute lymphoblastic leukemia (ALL) is the most common form of pediatric cancer. Although exposure to environmental agents appears to predispose individuals to this disease, little attention has been paid to the role of genetic susceptibility to environmental exposures in the etiology of childhood ALL. The enzymes GSTM1, GSTT1, GSTP1, CYP1A1, and CYP2E1 are involved in the bioactivation and detoxification of a variety of xenobiotics present in food, organic solvents, tobacco smoke, drugs, alcoholic drinks, pesticides, and environmental pollutants. Polymorphisms in the genes coding for these enzymes have been associated with increased susceptibility to different cancers, including hematologic malignancies. To investigate whether these polymorphisms represent risk-modifying factors for childhood ALL, a study was conducted involving 113 Brazilian patients of childhood ALL and 221 controls with similar ethnic backgrounds. The data revealed that carriers of the rare GSTP1 Val allele were at higher risk of ALL (odds ratio [OR] = 2.7; 95% confidence interval [CI] = 1.1-6.8; P = 0.04). No difference was found in the prevalence of the GSTM1 and GSTT1 null genotypes between ALL patients and the controls, and no association was found between CYP1A1*2 and CYP2E1*3 variants and ALL. However, when the mutant CYP1A1 and CYP2E1 alleles were considered together with the GSTM1 and GSTP1 risk-elevating genotypes, the risk of ALL was increased further (OR = 10.3; 95% CI = 1.0-111.8; P = 0.05), suggesting a combined effect. These results imply that genetic variants of xenobiotic metabolizing genes influence the risk of developing childhood ALL.
Copyright 2004 Wiley-Liss, Inc.