Differential tumor necrosis factor receptor 2-mediated editing of virus-specific CD8+ effector T cells

Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3545-50. doi: 10.1073/pnas.0307347101. Epub 2004 Mar 1.

Abstract

Much of the CD8(+) T cell response in H2(b) mice with influenza pneumonia is directed at the nucleoprotein(366-374) (NP(366)) and acid polymerase(224-233) (PA(224)) peptides presented by the H2D(b) MHC class I glycoprotein. These D(b)NP(366)- and D(b)PA(224)-specific T cell populations are readily analyzed by staining with tetrameric complexes of MHC(+) peptide (tetramers) or by cytokine production subsequent to in vitro stimulation with the cognate peptides. The D(b)PA(224)-specific CD8(+) effector T cells make more tumor necrosis factor (TNF) alpha than the comparable CD8(+)D(b)NP(366)(+) set, a difference reflected in the greater sensitivity of the CD8(+)D(b)PA(224)(+) population to TNF receptor (TNFR) 2-mediated apoptosis under conditions of in vitro culture. Freshly isolated CD8(+)D(b)NP(366)(+) and CD8(+)D(b)PA(224)(+) T cells from influenza-infected TNFR2(-/-) mice produce higher levels of IFN-gamma and TNF-alpha after in vitro stimulation with peptide, although the avidity of the T cell receptor-epitope interaction does not change. Increased numbers of both CD8(+)D(b)PA(224)(+) and CD8(+)D(b)NP(366)(+) T cells were recovered from the lungs (but not the spleens) of secondarily challenged TNFR2(-/-) mice, a pattern that correlates with the profiles of TNFR expression in the TNFR2(+/+) controls. Thus, it seems that TNFR2-mediated editing of influenza-specific CD8(+) T cells functions to limit the numbers of effectors that have localized to the site of pathology in the lung but does not modify the size of the less activated responder T cell populations in the spleen. Therefore, the massive difference in magnitude for the secondary, although not the primary, response to these D(b)NP(366) and D(b)PA(224) epitopes cannot be considered to reflect differential TNFR2-mediated T cell editing.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antigens, CD / genetics
  • Antigens, CD / metabolism*
  • Antigens, Viral
  • Apoptosis
  • CD8-Positive T-Lymphocytes / immunology*
  • Cells, Cultured
  • Cytokines / metabolism
  • Female
  • In Vitro Techniques
  • Influenza A virus / immunology
  • Lung / immunology
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Nucleocapsid Proteins
  • Nucleoproteins / immunology
  • Orthomyxoviridae Infections / genetics
  • Orthomyxoviridae Infections / immunology
  • RNA-Binding Proteins*
  • Receptors, Antigen, T-Cell / metabolism
  • Receptors, Tumor Necrosis Factor / deficiency
  • Receptors, Tumor Necrosis Factor / genetics
  • Receptors, Tumor Necrosis Factor / metabolism*
  • Receptors, Tumor Necrosis Factor, Type II
  • Spleen / immunology
  • Viral Core Proteins / immunology

Substances

  • Antigens, CD
  • Antigens, Viral
  • Cytokines
  • NP protein, Influenza A virus
  • Nucleocapsid Proteins
  • Nucleoproteins
  • RNA-Binding Proteins
  • Receptors, Antigen, T-Cell
  • Receptors, Tumor Necrosis Factor
  • Receptors, Tumor Necrosis Factor, Type II
  • Viral Core Proteins