This Letter focuses on the role of contacts and the influence of Schottky barriers on the switching in nanotransistors. Specifically, we discuss (i) the mechanism for injection from a three-dimensional metal into a low-dimensional semiconductor, i.e., the competition between thermionic emission and thermally assisted tunneling, (ii) the factors that affect tunneling probability with emphasis on the importance of the effective mass for transistor applications, and (iii) a novel approach that enables determination of barrier presence and its actual height.