This paper is a step towards a systematic theory of the transitivity (clustering) phenomenon in random networks. A static framework is used, with adjacency matrix playing the role of the dynamical variable. Hence, our model is a matrix model, where matrices are random, but their elements take values 0 and 1 only. Confusion present in some papers where earlier attempts to incorporate transitivity in a similar framework have been made is hopefully dissipated. Inspired by more conventional matrix models, analytic techniques to develop a static model with nontrivial clustering are introduced. Computer simulations complete the analytic discussion.