Two Loci of expression for long-term depression at hippocampal mossy fiber-interneuron synapses

J Neurosci. 2004 Mar 3;24(9):2112-21. doi: 10.1523/JNEUROSCI.4645-03.2004.

Abstract

Two distinct forms of long-term depression (LTD) exist at mossy fiber synapses between dentate gyrus granule cells and hippocampal CA3 stratum lucidum interneurons. Although induction of each form of LTD requires an elevation of postsynaptic intracellular Ca2+, at Ca2+-impermeable AMPA receptor (CI-AMPAR) synapses, induction is NMDA receptor (NMDAR) dependent, whereas LTD at Ca2+-permeable AMPA receptor (CP-AMPAR) synapses is NMDAR independent. However, the expression locus of either form of LTD is not known. Using a number of criteria, including the coefficient of variation, paired-pulse ratio, AMPA-NMDA receptor activity, and the low-affinity AMPAR antagonist gamma-D-glutamyl-glycine, we demonstrate that LTD expression at CP-AMPAR synapses is presynaptic and results from reduced transmitter release, whereas LTD expression at CI-AMPAR synapses is postsynaptic. The N-ethylmaleimide-sensitive fusion protein-AP2-clathrin adaptor protein 2 inhibitory peptide pep2m occluded LTD expression at CI-AMPAR synapses but not at CP-AMPAR synapses, confirming that CI-AMPAR LTD involves postsynaptic AMPAR trafficking. Thus, mossy fiber innervation of CA3 stratum lucidum interneurons occurs via two parallel systems targeted to either Ca2+-permeable or Ca2+-impermeable AMPA receptors, each with a distinct expression locus for long-term synaptic plasticity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Calcium / metabolism
  • Calcium / pharmacology
  • Electric Stimulation
  • Excitatory Amino Acid Antagonists / pharmacology
  • Excitatory Postsynaptic Potentials / drug effects
  • Excitatory Postsynaptic Potentials / physiology
  • Glutamic Acid / metabolism
  • In Vitro Techniques
  • Interneurons / metabolism
  • Interneurons / physiology*
  • Long-Term Synaptic Depression / drug effects
  • Long-Term Synaptic Depression / physiology*
  • Mossy Fibers, Hippocampal / physiology*
  • Oligopeptides / pharmacology
  • Patch-Clamp Techniques
  • Peptides / pharmacology
  • Protein Transport / drug effects
  • Protein Transport / physiology
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, AMPA / antagonists & inhibitors
  • Receptors, AMPA / metabolism
  • Receptors, N-Methyl-D-Aspartate / antagonists & inhibitors
  • Receptors, N-Methyl-D-Aspartate / metabolism
  • Synapses / metabolism
  • Synapses / physiology*

Substances

  • Excitatory Amino Acid Antagonists
  • Oligopeptides
  • Pep2m peptide
  • Peptides
  • Receptors, AMPA
  • Receptors, N-Methyl-D-Aspartate
  • Glutamic Acid
  • Calcium