Writer's cramp is a type of idiopathic focal dystonia with incompletely understood pathophysiology. Recent studies provide evidence that one element might be a sensory processing defect. We performed a PET study with O(15) H(2)O to find out in which brain areas activity correlates with the severity of writer's cramp symptoms.
Methods: We studied 10 patients with writer's cramp and 10 age- and gender-matched control subjects. There were seven conditions, each repeated twice: rest, writing, tapping with index finger for 2, 3, 4, and 5 min. For each scan, we obtained EMG recordings from the flexor digitorum superficialis (FDS), extensor indicis proprius (EIP) muscles, and a subjective score of severity of dystonia. Scans were realigned, normalized, smoothed, and analyzed using SPM99. Analysis included both intra- and intergroup comparisons and a correlation analysis where we used EMG recordings and subjective dystonia score as covariates.
Results: Random effect analysis of the writing task showed overactivity of the primary sensory cortex and no significant underactivity. Correlation analysis of dystonia patients showed activation of SI when we used the subjective dystonia score as a covariate, and activation of both the SI and primary motor cortex when the normalized EMG score of FDS was used.
Conclusion: While some overactivity of MI is not surprising, overactivity of SI is more dramatic and suggests a primary deficit in processing sensory feedback. Writer's cramp may arise in part as a dysfunction of sensory circuits, which causes defective sensorimotor integration resulting in co-contractions of muscles and overflow phenomena.