Dictyostelium is a favored model for studying problems in cell and developmental biology. To comprehend the genetic potential and networks that direct growth and multicellular development, we are performing a large-scale analysis of Dictyostelium cDNAs. Here, we newly determine 7720 nucleotide sequences of cDNAs from the multicellular, slug stage (S) and 10 439 from the unicellular, vegetative stage (V). The combined 26 954 redundant ESTs were computer assembled using the PHRAP program to yield 5381 independent sequences. These 5381 predicted genes represent about half of the estimated coding potential of the organism. One-third of them were classified into 12 functional categories. Although the overall classification patterns of the V and S libraries were very similar, stage-specific genes exist in every category. The majority of V-specific genes function in some aspect of protein translation, while such genes are in a minority in the S-specific and common populations. Instead, genes for signal transduction and multicellular organization are enriched in the population of S-specific genes. Genes encoding the enzymes of basic metabolism are mainly found in the common gene population. These results therefore suggest major differences between growing and developing Dictyostelium cells in the nature of the genes transcribed.