We investigated the expression of heme oxygenase-1 (HO-1) gene and production of endogenous carbon monoxide (CO) in the rat lung tissue at different time points of chronic hypoxic pulmonary hypertension and the effect of hemin on the expression of HO-1 gene and pulmonary hypertension. A rat model of hypoxic pulmonary hypertension was recreated by exposure to intermittent normobaric hypoxic environment (10% O2). Reverse transcriptase polymerase chain reaction (RT-PCR) was performed to determine the level of HO-1 mRNA in the rat lung tissue and double wave length spectrophotometry was used to evaluate the quantity of COHb in arterial blood. Cardiac catheterization was employed to measure the right ventricular systolic pressure (RVSP) and HE staining was performed in dissected lung tissue to observe the pathological changes of the intra-acinar pulmonary arteries (IAPA). It was found that (1) There was a low level of HO-1 mRNA in normal rat lung tissue, but the level of HO-1 mRNA increased by 2-4 times in the lung tissue of hypoxic rats (P<0.01). The quantity of COHb was 2-3 times those of control group (P<0.01 or P<0.05). These were accompanied by the increased of RVSP and the thickened IAPA; (2) Hemin could keep the HO-1 mRNA and COHb in the hypoxic rat lung tissue at a high level, and partially suppressed the increase of rat RVSP, thereby ameliorating the pathological changes of IAPA. In conclusion, the upregulation of the expression of HO-1 gene and production of CO in the rat lung of hypoxic pulmonary hypertension plays a role of inhibition in the development of hypoxic pulmonary hypertension. Hemin has a therapeutic effect on hypoxic pulmonary hypertension.