Susceptibility to spontaneous testicular germ cell tumors (TGCTs), a common cancer affecting young men, shows unusual genetic complexity. Despite remarkable progress in the genetics analysis of susceptibility to many cancers, TGCT susceptibility genes have not yet been identified. Various mutations that are inherited as Mendelian traits in laboratory mice affect susceptibility to spontaneous TGCTs on the 129/Sv inbred genetic background. We compared the frequency of spontaneous TGCTs in single- and double-mutant mice to identify combinations that show evidence of enhancer or suppressor effects. The lower-than-expected TGCT frequencies in mice with partial deficiencies of TRP53 and MGF-SLJ and in 129.MOLF-Chr19 (M19) consomic mice that were heterozygous for the A(y) mutation suggest that either these genes complement each other to restore normal functionality in TGCT stem cells or together these genes activate mechanisms that suppress incipient TGCTs. By contrast, the higher-than-expected TGCT frequencies in Mgf(Sl-J)-M19 compound heterozygous mice suggest that these mutations exacerbate each other's effects. Together, these results provide clues to the genetic and molecular basis for susceptibility to TGCTs in mice and perhaps in humans.