Cyclo-oxygenase-2 (COX-2) expression at the site of recent myocardial infarction: friend or foe?

Heart. 2004 Apr;90(4):440-3. doi: 10.1136/hrt.2003.010280.

Abstract

Background: Cyclo-oxygenase-2 (COX-2) is induced in cardiomyocytes only in response to stress, such as ischaemia.

Objective: To assess COX-2 expression at the site of recent myocardial infarction.

Methods: COX-2 expression was evaluated by specific immunostaining in cardiomyocytes from 23 subjects who died 10-60 days after acute myocardial infarction. The relation between COX-2 myocardial expression and apoptotic rate was investigated. Cardiomyocyte apoptotic rate was defined as the number of cells co-expressing in situ end labelling of DNA fragmentation (TUNEL) and immunostaining for activated caspase-3.

Results: COX-2 expression was found in cardiomyocytes at the site of infarction in nine of 23 cases (39%). It was associated with fivefold higher apoptotic rates (median 17.9% (interquartile range 11.0-25.4%) v 3.7% (0.6-12.8%); p = 0.016), and apoptotic rate increased progressively from mild to intense COX-2 staining (p for trend 0.009). COX-2 expression co-localised with TUNEL nuclear staining in myocytes, and there was a high concordance between COX-2 and hypoxia induced factor 1-alpha staining (78%, p = 0.021) and between COX-2 and bax (83%, p = 0.014). Subjects showing myocardial COX-2 expression were more likely to have enlarged hearts (p = 0.050), and intense COX-2 staining was strictly associated with symptomatic heart failure (p = 0.035).

Conclusions: COX-2 is expressed in cardiomyocytes in nearly 40% of cases at the site of recent acute myocardial infarction, even late after the index event. Its expression was associated with extremely high apoptotic rates. These findings suggest a potential cause-effect link between COX-2 expression and enhanced myocardial apoptosis in ischaemic cardiomyopathy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Apoptosis
  • Biomarkers / blood
  • Cyclooxygenase 2
  • Female
  • Humans
  • Immunohistochemistry
  • Isoenzymes / metabolism*
  • Male
  • Membrane Proteins
  • Myocardial Infarction / enzymology*
  • Myocardial Infarction / pathology
  • Myocytes, Cardiac / enzymology
  • Prostaglandin-Endoperoxide Synthases / metabolism*

Substances

  • Biomarkers
  • Isoenzymes
  • Membrane Proteins
  • Cyclooxygenase 2
  • PTGS2 protein, human
  • Prostaglandin-Endoperoxide Synthases