Metabolite-initiated protein misfolding may trigger Alzheimer's disease

Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4752-7. doi: 10.1073/pnas.0400924101. Epub 2004 Mar 19.

Abstract

Anfinsen showed that a protein's fold is specified by its sequence. Although it is clear why mutant proteins form amyloid, it is harder to rationalize why a wild-type protein adopts a native conformation in most individuals, but it misfolds in a minority of others, in what should be a common extracellular environment. This discrepancy suggests that another event likely triggers misfolding in sporadic amyloid disease. One possibility is that an abnormal metabolite, generated only in some individuals, covalently modifies the protein or peptide and causes it to misfold, but evidence for this is sparse. Candidate metabolites are suggested by the recently appreciated links between Alzheimer's disease (AD) and atherosclerosis, known chronic inflammatory metabolites, and the newly discovered generation of ozone during inflammation. Here we report detection of cholesterol ozonolysis products in human brains. These products and a related, lipid-derived aldehyde covalently modify Abeta, dramatically accelerating its amyloidogenesis in vitro, providing a possible chemical link between hypercholesterolemia, inflammation, atherosclerosis, and sporadic AD.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease / metabolism*
  • Amyloid beta-Peptides / metabolism*
  • Chromatography, High Pressure Liquid
  • Humans
  • Microscopy, Atomic Force
  • Protein Folding*

Substances

  • Amyloid beta-Peptides