We have investigated the mechanisms by which all-trans retinoic acid (ATRA) causes growth inhibition of ovarian carcinoma cells. As a model, we have studied the CAOV3 cell line, which is sensitive to ATRA, and the SKOV3 cell line, which is resistant. We have found that treatment of CAOV3 cells with ATRA causes a 5-10 fold increase in the protein level of the cyclin dependent kinase inhibitor p27/Kip1. p27/Kip1 protein upregulation is important in ovarian carcinoma as primary tumors are frequently found lacking this protein. The increase in p27/Kip1 is detected by day 3 of ATRA treatment of CAOV3 cells, and is maximal by day 5. Messenger RNA levels of p27/Kip1 do not change in CAOV3 cells following ATRA treatment, however, we have shown that p27/Kip1 mRNA is more stable in ATRA treated CAOV3 cells. Conversely, the ATRA resistant cell line SKOV3 fails to show p27/Kip1 accumulation. Interestingly, the SCF component protein SKP2 appears to be decreased in CAOV3 cells treated with ATRA. We have also shown that the ATRA dependent increase in p27/kip1 protein in CAOV3 cells leads to a decrease in the kinase activity of cyclin dependent kinase 4 (CDK4) following ATRA treatment. Finally, we found that CAOV3 cells stably transfected with a p27/kip1antisense construct, which express lower levels of p27/kip1 following ATRA treatment, and have a higher CDK4 kinase activity are less sensitive to ATRA induced growth suppression. Taken together our data suggest ATRA-induced growth inhibition in CAOV3 ovarian carcinoma cells involves modulation of the CDK inhibitor p27/kip1.