Disabled elderly stroke patients occasionally have very low serum 25-hydroxyvitamin D (25-OHD), which may be due to sunlight deprivation and malnutrition. Many of such patients have very low level of serum 1, 25-dihydroxyvitamin D (1, 25-[OH]2D; calcitriol), and immobilization-induced hypercalcemia may be responsible for inhibition of renal synthesis of calcitriol. To elucidate determinants of serum 1, 25-[OH]2D levels in elderly poststroke patients, we measured serum indices of bone and calcium metabolism and metacarpal bone mineral density (BMD). Patients whose serum 1, 25-[OH]2D concentration was below the mean-3 SD of normal control subjects were defined as the low 1, 25-[OH]2D group and the rest of the patients were designated as the normal group. Mean illness duration was 59 months in the normal group and 20 months in the low group. The Barthel index (BI), which predicts the degree of immobilization, was significantly lower in the low group than in the normal group. Mean serum 1, 25-[OH]2D and 25-OHD concentrations in the normal group were 36.7 pg/ml and 4.4 ng/ml, respectively; and those in the low group were 14.2 pg/ml and 1.8 ng/ml, respectively. Multiple regression analysis identified illness duration and calcium level as independent determinants of 1, 25-[OH]2D in both groups, and PTH in the normal group and 25-OHD in the low group were additional independent determinants. BMD in stroke patients was significantly lower than that in controls, and BMD in the normal group was lower as compared to the low group. BMD correlated negatively with 1, 25-[OH]2D and PTH in the normal group, and hyperparathyroidism may contribute to reduced BMD. These results suggest that treatment of decreased bone mass in stroke patients has to be individualized according to vitamin D status and calcium homeostasis.