Insulin-like growth factors and their receptor (IGF-1R) have been implicated in cancer pathophysiology. We demonstrate that IGF-1R is universally expressed in various hematologic (multiple myeloma, lymphoma, leukemia) and solid tumor (breast, prostate, lung, colon, thyroid, renal, adrenal cancer, retinoblastoma, and sarcoma) cells. Specific IGF-1R inhibition with neutralizing antibody, antagonistic peptide, or the selective kinase inhibitor NVP-ADW742 has in vitro activity against diverse tumor cell types (particularly multiple myeloma), even those resistant to conventional therapies, and triggers pleiotropic antiproliferative/proapoptotic molecular sequelae, delineated by global transcriptional and proteomic profiling. NVP-ADW742 monotherapy or its combination with cytotoxic chemotherapy had significant antitumor activity in an orthotopic xenograft MM model, providing in vivo proof of principle for therapeutic use of selective IGF-1R inhibitors in cancer.