Recently, adult stem cells have been isolated from the skin and designated as skin-derived precursors (SKPs). These SKPs, cultured in vitro, can give rise to neurons, glia, smooth muscle cells, and adipocytes. In the current study, we confirmed the clonal expansion of SKPs using a sphere-forming culture system in a medium containing methylcellulose. Among the growth factors, only transforming growth factor-beta (TGF-beta) was revealed to uniquely facilitate the sphere formation and proliferation of the SKPs in combination with EGF and bFGF. In addition, TGF-beta did not alter phenotypical characteristics of the SKPs under sphere-forming conditions. The effect of TGF-beta on sphere formation was not observed in neural stem cells, which expressed a different set of cell surface markers from SKPs, suggesting that SKPs have distinct features. Although the number of SKPs decreased with age, TGF-beta increased the sphere colony formation and proliferation in all ages. These results suggest that SKPs maintained in the presence of TGF-beta during culture are of potential use in cell-replacement therapies employing adult tissue sources.