Executive cognitive functions have been postulated to include both dynamic behavioral selection and strategic goal-setting or response preparation. To investigate the relation between these aspects of executive processing, we embedded an event-related oddball paradigm within a blocked design. Subjects responded to infrequent targets presented within a series of standard stimuli that required no response; this task alternated with a visually similar nontask condition. Using functional magnetic resonance imaging (fMRI), we found that a set of brain regions including dorsolateral prefrontal cortex (dlPFC), insular cortex, cingular cortex, and the basal ganglia demonstrated transient activation both to target stimuli and to the onset of task blocks. Within the parietal cortex, there was a dissociation such that the supramarginal gyrus exhibited greater activity to the target stimuli than to block onsets, while the converse pattern was observed in the intraparietal sulcus. Sustained positive activity during task blocks was present in the caudate and supplementary motor area, while sustained negative activity was present in the precuneus and medial parietal cortex. We conclude that dlPFC and related brain regions mediate both dynamic and strategic processing, through the preparation and selection of rules for behavior.