A new MRI simulator has been developed that generates images of realistic objects for arbitrary pulse sequences executed in the presence of static field inhomogeneities, including those due to magnetic susceptibility, variations in the applied field, and chemical shift. In contrast to previous simulators, this system generates object-specific inhomogeneity patterns from first principles and propagates the consequent frequency offsets and intravoxel dephasing through the acquisition protocols to produce images with realistic artifacts. The simulator consists of two parts. The input to part 1 is a set of "susceptibility voxels" that describe the magnetic properties of the object being imaged. It calculates a frequency offset for each voxel by computing the size of the static field offset at each voxel in the image based on the magnetic susceptibility of each tissue type within all voxels. The method of calculation is a three-dimensional convolution of the susceptibility-voxels with a kernel derived from a previously published method and takes advantage of the superposition principle to include voxels with mixtures of substances of differing susceptibilities. Part 2 produces both a signal and a reconstructed image. Its inputs include a voxel-based description of the object, frequency offsets computed by part 1, applied static field errors, chemical shift values, and a description of the imaging protocol. Intravoxel variations in both static field and time-dependent phase are calculated for each voxel. Validations of part 1 are presented for a known analytic solution and for experimental data from two phantoms. Part 2 was validated with comparisons to an independent simulation provided by the Montreal Neurological Institute and experimental data from a phantom.