The two-stage skin carcinogenesis model of initiation and promotion in Carcinogenesis-susceptible (Car-S) mice has been used to investigate the pathways of promotional activity of 12-O-tetradecanoylphorbol-13-acetate (TPA), a phorbol ester tumor promoter, and benzoyl peroxide (BzPo), a free radical-generating compound. To test whether distinct populations of 9,10-dimethyl-1,2-benzanthracene (DMBA)-initiated epidermal keratinocytes are responsive to the two promoters, tandem experiments were performed. DMBA-initiated Car-S mice were promoted twice weekly with maximal promoting doses of TPA or BzPo. When the number of papillomas/mouse reached a plateau, promotion in the TPA and BzPo groups was switched to BzPo or TPA, respectively, until achievement of a new plateau. Mice promoted with BzPo developed 11.0 +/- 1.3 papillomas/mouse and subsequent TPA promotion induced 13.8 additional papillomas, for a total of 24.8 +/- 2.1 papillomas/mouse. TPA-promoted mice developed 23.3 +/- 1.1 papillomas/mouse, and subsequent BzPo promotion for 91 days did not promote additional papillomas. Our results show a less than additive tumor response after sequential promotion with BzPo and TPA, or vice versa, indicating that the pathways of promotional activity of TPA and BzPo are interacting. While the final papilloma yield was similar at the end of the two tandem promotion experiments independently of promoter sequence, the percentage of mice developing carcinomas was significantly higher in mice that were promoted with BzPo in the first stage. No significant differences in the frequency and type of c-Ha-ras mutations were observed in TPA- and BzPo-promoted tumors, suggesting that promotion of DMBA-initiated cells by BzPo requires introduction of additional molecular alterations compared to TPA.