Activation of the transcription factor AP-1 (activator protein-1) is required for tumor promotion and maintenance of malignant phenotype. A number of AP-1-regulated genes that play a role in tumor progression have been identified. However, AP-1-regulated genes driving tumor induction are yet to be defined. Previous studies have established that expression of a dominant-negative c-Jun (TAM67) inhibits phorbol 12-tetradecanoyl-13-acetate (TPA)-induced AP-1 transactivation as well as transformation in mouse epidermal JB6/P+ cells and tumor promotion in mouse skin carcinogenesis. In this study, we utilized the tumor promotion-sensitive JB6/P+ cells to identify AP-1-regulated TAM67 target genes and to establish causal significance in transformation for one target gene. A 2700 cDNA microarray was queried with RNA from TPA-treated P+ cells with or without TAM67 expression. Under conditions in which TAM expression inhibited TPA-induced transformation, microarray analysis identified a subset of six genes induced by TPA and suppressed by TAM67. One of the identified genes, the high-mobility group protein A1 (Hmga1) is induced by TPA in P+, but not in transformation-resistant P cells. We show that TPA induction of the architectural transcription factor HMGA1 is inhibited by TAM67, is extracellular-signal-regulated kinase (ERK)-activation dependent, and is mediated by AP-1. HMGA1 antisense construct transfected into P+ cells blocked HMGA1 protein expression and inhibited TPA-induced transformation indicating that HMGA1 is required for transformation. HMGA1 is not however sufficient as HMGA1a or HMGA1b overexpression did not confer transformation sensitivity on P- cells. Although HMGA1 expression is ERK dependent, it is not the only ERK-dependent event required for transformation because it does not suffice to rescue ERK-deficient P- cells. Our study shows (a) TAM 67 when it inhibits AP-1 and transformation, targets a relatively small number of genes; (b) HMGA1, a TAM67 target gene, is causally related to transformation and therefore a potentially important target for cancer prevention.