Conformational changes enable the photoreceptor rhodopsin to couple with and activate the G-protein transducin. Here we demonstrate a key interaction between these proteins occurs between the C terminus of the transducin alpha-subunit (G(Talpha)) and a hydrophobic cleft in the rhodopsin cytoplasmic face exposed during receptor activation. We mapped this interaction by labeling rhodopsin mutants with the fluorescent probe bimane and then assessed how binding of a peptide analogue of the G(Talpha) C terminus (containing a tryptophan quenching group) affected their fluorescence. From these and other assays, we conclude that the G(Talpha) C-terminal tail binds to the inner face of helix 6 in a retinal-linked manner. Further, we find that a "hydrophobic patch" comprising key residues in the exposed cleft is required for transducin binding/activation because it enhances the binding affinity for the G(Talpha) C-terminal tail, contributing up to 3 kcal/mol for this interaction. We speculate the hydrophobic interactions identified here may be important in other GPCR signaling systems, and our Trp/bimane fluorescence methodology may be generally useful for mapping sites of protein-protein interaction.