N4-Hydroxycytidine (NHC) was recently reported to have anti-pestivirus and anti-hepacivirus activity. It is thought that this nucleoside acts as a weak alternative substrate for the hepatitis C virus (HCV) polymerase. In addition to NHC, 3'-deoxyuridine (3'-dU) was found to inhibit bovine diarrhoea virus (BVDV) production by 1 log10 at 37.2 microM. These initial findings prompted the synthesis of beta-D and beta-L analogues of (i) base-modified 3'-deoxy-NHC; (ii) 3'-deoxyuridine; and 3'-deoxycytidine. The antiviral activity of these 42 nucleosides was evaluated against BVDV and HCV bicistronic replicon in cell culture. Among the NHC analogues, the antiviral activity observed for the beta-L-3'-deoxy-5-fluoro-derivative 1-(3-deoxy-beta-L-erythro-pentofuranosyl)-5-fluoro-4-hydroxyaminopyrimidin-2(1H)-one and the beta-D-3'-deoxy-5-iodo-derivative 1-(3-deoxy-beta-D-erythro-pentofuranosyl)-5-iodocytosine in the replicon system (1 log10 reduction at 100 microM) was due to the concomitant toxicity towards intracellular ribosomal RNA levels (CC90 equal or lower than the EC90). In conclusion, none of the newly synthesized derivatives exhibited enhanced antiviral activity compared to the parent nucleoside NHC.