Aim: Wall stress-independent signalling pathways were studied for endothelin-1 (ET-1)-induced c-fos expression in rat intact mesenteric small arteries.
Methods: Arteries were kept unmounted in Krebs buffer, equilibrated for 1 h and stimulated with vasoactive substances for 15-60 min. The c-fos mRNA expression was determined by real-time polymerase chain reaction.
Results: Stimulation with fetal bovine serum (FBS), phorbol 12-myristate 13-acetate (PMA) and ET-1 caused about a doubling of c-fos mRNA. The ET-1-induced c-fos expression was steady (15-60 min) and was inhibited by the inhibitor of the ET(A) receptor, BQ-123. Platelet-derived growth factor-B, angiotensin II and U46619 did not cause increased c-fos mRNA levels. The broad specificity inhibitor staurosporine inhibited the response to ET-1, but inhibitors of Rho-A kinase and phosphatidylinositol 3-kinase had no effect. However, inhibitors to tyrosine kinases, the MAP kinases [extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun amino-terminal kinase, p38], and to conventional protein kinase C showed no inhibition. Consistent with these findings, ET-1 did not cause activation of ERK1/2, a finding also seen in vessels held under pressure. In contrast, ET-1-induced c-fos expression was inhibited by the calcium chelator BAPTA, suggesting a role for intracellular calcium. This possibility was supported by the finding that raising the extracellular K(+) concentration caused increased expression of c-fos in a concentration-dependent manner.
Conclusion: The results suggest that in the absence of wall stress, ET-1 is able to induce increased expression of c-fos independent of traditional growth pathways, such as MAP kinase. The mechanism appears to be calcium-dependent.