3D electron tomography studies of the structure of the mammalian Golgi complex have led to four functional predictions (1). The sorting and exit site from the Golgi comprises two or three distinct trans-cisternae (2). The docking of vesicular-tubular clusters at the cis-face and the fragmentation of trans-cisternae are coordinated (3). The mechanisms of transport through, and exit from, the Golgi vary with physiological state, and in different cells and tissues (4). Specialized trans-ER functions in the delivery of ceramide to sphingomyelin synthase in the trans-Golgi membrane, for the regulated sorting via sphingolipid-cholesterol-rich domains. These structure-based predictions can now be tested using a variety of powerful cell and molecular tools.