MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo

Circulation. 2004 Apr 27;109(16):1938-41. doi: 10.1161/01.CIR.0000127126.73759.23. Epub 2004 Apr 19.

Abstract

Background: Myocardial infarction causes a rapid and largely irreversible loss of cardiac myocytes that can lead to sudden death, ventricular dilation, and heart failure. Members of the mitogen-activated protein kinase (MAPK) signaling cascade have been implicated as important effectors of cardiac myocyte cell death in response to diverse stimuli, including ischemia-reperfusion injury. Specifically, activation of the extracellular signal-regulated kinases 1/2 (ERK1/2) has been associated with cardioprotection, likely through antagonism of apoptotic regulatory pathways.

Methods and results: To establish a causal relationship between ERK1/2 signaling and cardioprotection, we analyzed Erk1 nullizygous gene-targeted mice, Erk2 heterozygous gene-targeted mice, and transgenic mice with activated MEK1-ERK1/2 signaling in the heart. Although MEK1 transgenic mice were largely resistant to ischemia-reperfusion injury, Erk2+/- gene-targeted mice showed enhanced infarction areas, DNA laddering, and terminal deoxynucleotidyl transferase-mediated dUTP biotin nick-end labeling (TUNEL) compared with littermate controls. In contrast, enhanced MEK1-ERK1/2 signaling protected hearts from DNA laddering, TUNEL, and preserved hemodynamic function assessed by pressure-volume loop recordings after ischemia-reperfusion injury.

Conclusions: These data are the first to demonstrate that ERK2 signaling is required to protect the myocardium from ischemia-reperfusion injury in vivo.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Apoptosis
  • Hemodynamics
  • MAP Kinase Kinase 1
  • MAP Kinase Signaling System
  • Mice
  • Mice, Knockout
  • Mice, Transgenic
  • Mitogen-Activated Protein Kinase 1 / genetics
  • Mitogen-Activated Protein Kinase 1 / metabolism*
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinase Kinases / metabolism*
  • Mitogen-Activated Protein Kinases / genetics
  • Mitogen-Activated Protein Kinases / metabolism
  • Myocardial Ischemia / enzymology*
  • Myocardial Ischemia / pathology
  • Myocardial Ischemia / physiopathology
  • Myocardium / enzymology

Substances

  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • MAP Kinase Kinase 1
  • Map2k1 protein, mouse
  • Mitogen-Activated Protein Kinase Kinases