Nanoparticles of lithium manganese oxide (LiMn2O4) with a spinel structure have been synthesized by a one-step intermediate temperature solid-state reaction. The influence of the molar ratio of citric acid to the metal ions on the physicochemical properties of LiMn2O4 powders in air has been analyzed by means of X-ray diffraction and electron microscope techniques. The electrochemical behavior of the material has been examined by charge/discharge tests and cyclic voltammetry. Test results reveal that LiMn2O4 particles with lower molar ratios of citric acid to metal ions (1:2) are highly crystalline and highly electrochemically reversible, with better cycle capabilities when compared with a sample with a higher molar ratio (2:1). The LiMn2O4 powders obtained by this method have a uniform morphology with a narrow size distribution.