Investigation of structural features of native chromatin requires the use of intact nuclei, a turbid material which cannot be analyzed by optical methods. Differential scanning calorimetry does not require optically clear samples and has been proved by a number of authors to be a powerful tool in this field of study. By this technique, chicken erythrocyte nuclei were found to undergo at least four thermal transitions, centered at 59, 74, 88 and 98 degrees C. The highest temperature transition is strongly dependent on age and storage conditions of the nuclei. Adequate storage conditions overcame this problem and reproducible scans were obtained over a period of several months. This technical improvement has permitted the reconsideration of the occurrence of the fourth calorimetric transition, previously believed to be displayed only in replicating nuclei. Evidence gathered in the presence of perturbants and possible ligands allows the assignment of the four transitions to a nuclear protein scaffold, histones, nucleosomal DNA and a superstructured form of DNA. Moreover, it suggests that the higher-order structure is stabilized by fibronectin-like proteins.